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Review of Linear Programming

. minimize C*X
o s.t. a;*x = b, i=1,...,m
x € R"
maximize it1yib;
v s.t. i=1Yia t5=¢
x € R"

* Duality Gap: ¢ x — X2 yib; = (¢ - x — LiZ1 ¥ia;) " x =
=s-x=0
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Facts about matrices

{ If X isan n X n matrix, then X is a positive semidefinite (psd)
PSD: | matrix if

vIXv >0 forany v € R".

If X isan n X n matrix, then X is a positive definite (pd) matrix

pp: | If
vIXv >0 forany vERY, v #0.

S™: set of n X n symmetric matrices.

S™ . set of positive semidefinite n X nsymmetric matrices. | X >0

S™ . i set of positive definite n X n symmetric matrices. | x > 0

Xz2YSX-Y >0
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Semidefinite Cone

e | K isaclosed convex cone if:
Closed
Convex X WEK=ax+fweEK, Va,pf =0.
Cone: ** K is a closed set

Remark 1:

S™", ={X € S™|X > 0}is aclosed convex cone in R
of dimensionn X (n+ 1) /2.

Proof. Supposethat X, W € S" ..V a,B = 0, Vv € R™:
vi(a- X+ - Ww=a-vIXv+p -vIWv >0,

Whereby a-X+ [-W € S",.
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Properties of Symmetric Matrices

#XeS" = X=0DQ"
(Q is orthonormal [QT = Q™ 1], D is diagonal)

¢ The columns of () form a set of n orthogonal eigenvectors of

X, whose eigenvalues are the corresponding diagonal entries
of D.

$*X =0 X =0DQ", where the eigenvalues are all
nonnegative.

X >0=X = QDQT where the eigenvalues are all positive.
o [(X =0)AX; =0)] = Xij = Xj =0, vVj=1,.,n
%* Matrix M defined as follows: B (P v)

» Where P > 0, vis avectorand d is a scalar.
»ThenM >0 d—-v' P v >0.
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We can think of X as....

*¢* A matrix,

* An array of n? components of the form (x14, ..., Xn),

“* An object (a vector) in the space S™
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Linear Function of X

i C(X) is a linear function of X, then C(X) can be written as

C = X, where
n n
C*XZZZCIXU

i=1j=1
If X is a symmetric matrix, w.l.0.g. matrix C is also symmetric.




Semidefinite program (SDP)

minimize CxX
SDP: s.t. Ai * X = bi! I = 1, e, M
X=0




An example [n =3, m = 2] (1)
EREGE
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3
0), b; =11 and b, = 19.
7

X11 X12 X13
X =|X21 Xp2 X33

X31 X32 X33

S O N

C*X =xq1+ 4x15 + 6x13 +9x5, + 0x53 + 7x33.
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minimize X171+ 4x1p + 6x13 + 9%, + 0xp3 + 7x33
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An example [n = 3, m = 2] (2)

minimize X11 + 4x1p + 6x13 + 9%, + 0xp3 + 7x33
S.t. Ai*X= bi: i=1, e, M

X11 X12 X13
X=|X21 X222 X23|20

X31 X32 X33

Notice that SDP looks remarkably similar to a linear program.




LP : Special case of SDP
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LP : Special case of SDP

mtuitively,
[((x =2 0) & (x; = 0)]

N\
[(X = 0) < (each of the n eigenvalues = 0)]

If A; = diag(a;q, ..., x;n), i = 1,...,mand C = diag(cy, ..., Cp):

minimize Cx*xX
s.t. AixX=Db;, 1=1,...m
XUZO, i=1,...,n, j=i+1,...,?’l.

X >0




LP : Special case of SDP
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Semidefinite Programming Duality

. maximize L vib;
SDD: S.t. }Zlyi A;+S5S=0C,
S*0

The constraints of SDD state that:

m
S=C-) yiA
=1

must be positive semidefinite. That is,

m
S?—O:»C—ZyiA,;?O
=1




The Dual of the example

maximize
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11y, + 19y,
1 0 1
1 7 5

S*0

ol

0
2
8

2
6
0

8
0
4

oo




The Dual of the example

maximize 11y, + 19y,

1 0 1 0 2 8 2
1 7 5 8 0 4 0
S=0
maximize 11y, + 19y,
S.t.
1 =1y =0y, 2-0y;—2y, 3—1y;—8y;
2=0y1 =2y, 9—=3y1—6y, 0—=7y; =0y, | >0

3—=1y1 =8y, 0—7y;— 0y,

7 — 5y — 4y,




Weak Duality

Given a feasible solution X of SDP and a feasible solution (y, S)
of SDD, the duality gap is

m
C*X—Zyibi=S*X20.
)

IfC X — Y%, y;b; =0, then X and (y, S) are each optimal
solutions to SDP and SDD, respectively, and furthermore,




Strong Duality

Let and denote the optimal objective function values of
SDP and SDD, respectively.

Suppose that there exists a feasible solution = of SDP such that
,and there exists a feasible solution of SDD such
ylels

Then both SDP and SDD attain their optimal values, and
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dual may or may not attain their optima.




Key properties not extended

** There may be a finite or infinite duality gap. The primal or
dual may or may not attain their optima.

** There is no finite algorithm for solving SDP. There is a simplex
algorithm, but it is not a finite algorithm. There is no direct
analog of a “basic feasible solution” for SDP.




Key properties not extended

** There may be a finite or infinite duality gap. The primal or
dual may or may not attain their optima.

** There is no finite algorithm for solving SDP. There is a simplex
algorithm, but it is not a finite algorithm. There is no direct
analog of a “basic feasible solution” for SDP.

*» Given rational data, the feasible region may have no rational
solutions. The optimal solution may not have rational
components or rational eigenvalues.




Key properties not extended

¢ There may be a finite or infinite duality gap. The primal or
dual may or may not attain their optima.

¢ There is no finite algorithm for solving SDP. There is a simplex
algorithm, but it is not a finite algorithm. There is no direct
analog of a “basic feasible solution” for SDP.

%* Given rational data, the feasible region may have no rational
solutions. The optimal solution may not have rational
components or rational eigenvalues.

+%* Given rational data whose binary encoding is size L, the norms

of any feasible and/or optimal solutions may exceed 22L(or
worse).

*%* Given rational data whose binary encoding is size L, the norms
of any feasible and/or optimal solutions may be less than

L
27-?"(or worse).

*

L)




MAX CUT as Integer Program

tet G be an undirected graph with nodes N = {1, ..., n}, and
edge set £. Let w;; = w;; be the weighton edge (1,/) € E. We
assume that w;; = O forall (1,/) € E.

The MAX CUT problem is to determine a subset S of the nodes

N for which the sum of the weights of the edges that cross from
S to its complement S is maximized (where (5 := N\ 5)).




MAX CUT as Integer Program

tet G be an undirected graph with nodes N = {1, ..., n}, and
edge set £. Let w;; = w;; be the weighton edge (1,/) € E. We
assume that w;; = O forall (1,/) € E.

The MAX CUT problem is to determine a subset S of the nodes

N for which the sum of the weights of the edges that cross from
S to its complement S is maximized (where (5 := N\ 5)).

Lletx; = 1forj € Sandx; = —1forj € S.

1
MAX 7 Zi=1 2i=1 Wi (1 — x:x;)

LT s.t. x€{-11}, j=1..n

maximize ,




Proper Transformation

tet Y = xx”, whereby

Y,;),':XL'XP L':1,...,Tl, j=1,...,n




Proper Transformation

tet Y = xx”, whereby

Yij = xixj,

(=1, ...,n,

ji=1,..

Then MAX CUT can be equivalently formulated as:

maximize y

s.t.

1
ZZ?:I Yimgwij —W Y

X; (S {—1,1},
Y = xxT.

i=1,..

,n




Proper Transformation

tet Y = xx”, whereby

}’}vle-xj, (=1, ...,n, j=1,..,n

Then MAX CUT can be equivalently formulated as:

. 1
maximize y im1 Dt Wi — WY

s.t. j=1,..,n

Y = xxT.




Relaxation

The matrix Y is a symmetric rank-1 positive semidefinite matrix.
If we relax this condition by removing the rank-1 restriction, we
obtain the following relaxation of MAX CUT:

- . 1 n n
maximizey 2 Xizq Rimqg Wij —W Y

RELAX: | <t Y =1, i=1,..,n
Y = 0.




Relaxation

The matrix Y is a symmetric rank-1 positive semidefinite matrix.
If we relax this condition by removing the rank-1 restriction, we
obtain the following relaxation of MAX CUT:

maximize y i i1 =i Wij — WY
RELAX: s.t. V=1, j=1,..,n
Y = 0.

which is a semidefinite program.




Upper bound

it is easy to see that RELAX provides an upper bound on MAX
CUT, i.e.

MAX CUT < RELAX.




Upper bound

it is easy to see that RELAX provides an upper bound on MAX
CUT, i.e.

MAX CUT < RELAX.

As it turns out, one can also prove:

0.87856 RELAX < MAX CUT < RELAX.

This is an impressive result, in that it states that the value of the
semidefinite relaxation is guaranteed to be no more than 12%
higher than the value of NP-hard problem MAX CUT.




Applications

JdCombinatorial Optimization




Applications

(JCombinatorial Optimization

JConvex Optimization




Applications

(JCombinatorial Optimization
JConvex Optimization

JControl Theory
—-Interior point methods







