# Introduction to Semidefinite Programming

Konstantinidis Orestis M.P.L.A. Network Algorithms

## **Review of Linear Programming**

 $\begin{array}{ll} \text{minimize} & c \cdot x \\ \text{s.t.} & a_i \cdot x = b_i, \quad i = 1, \dots, m \\ & x \in \mathfrak{R}^n_+ \end{array}$ 

LP:

## **Review of Linear Programming**

| minimize<br>s.t. | $c \cdot x$<br>$a_i \cdot x = b_i, \qquad i = 1, \dots, m$<br>$x \in \mathfrak{R}^n_+$                         |
|------------------|----------------------------------------------------------------------------------------------------------------|
| maximize<br>s.t. | $\begin{split} & \sum_{i=1}^{m} y_i b_i \\ & \sum_{i=1}^{m} y_i a_i + s = c, \\ & x \in \Re^n_{+} \end{split}$ |

LD:

LP:

## **Review of Linear Programming**

| •<br>LP: | minimize<br>s.t. | $c \cdot x$<br>$a_i \cdot x = b_i, \qquad i = 1, \dots, m$<br>$x \in \mathfrak{R}^n_{+}$                       |
|----------|------------------|----------------------------------------------------------------------------------------------------------------|
| LD:      | maximize<br>s.t. | $\begin{split} & \sum_{i=1}^{m} y_i b_i \\ & \sum_{i=1}^{m} y_i a_i + s = c, \\ & x \in \Re^n_{+} \end{split}$ |

• Duality Gap: 
$$c \cdot x - \sum_{i=1}^{m} y_i b_i = (c \cdot x - \sum_{i=1}^{m} y_i a_i) \cdot x =$$
  
=  $s \cdot x \ge 0$ 

#### Facts about matrices

If X is an  $n \times n$  matrix, then X is a positive semidefinite (psd) matrix if

 $v^T X v \ge 0$  for any  $v \in \Re^n$ .

PSD:

#### Facts about matrices

If X is an  $n \times n$  matrix, then X is a positive semidefinite (psd) matrix if

$$v^T X v \ge 0$$
 for any  $v \in \Re^n$ .

If X is an  $n \times n$  matrix, then X is a positive definite (pd) matrix if

```
v^T X v > 0 for any v \in \Re^n, v \neq 0.
```

PD:

**PSD**:

#### Facts about matrices

**PSD**:

PD:

If X is an  $n \times n$  matrix, then X is a positive semidefinite (psd) matrix if

 $v^T X v \ge 0$  for any  $v \in \Re^n$ .

If X is an  $n \times n$  matrix, then X is a positive definite (pd) matrix if

$$v^T X v > 0$$
 for any  $v \in \Re^n$ ,  $v \neq 0$ .

 $S^n$ : set of  $n \times n$  symmetric matrices.

 $S^{n}_{+}$ : set of positive semidefinite  $n \times n$  symmetric matrices.  $X \ge 0$  $S^{n}_{++}$ : set of positive definite  $n \times n$  symmetric matrices.

$$X \succ 0$$

 $X \ge Y \Longleftrightarrow X - Y \ge 0$ 

## Semidefinite Cone

*K* is a *closed convex cone* if:

Closed Convex Cone:

#### $x, w \in K \implies \alpha x + \beta w \in K, \quad \forall \alpha, \beta \ge 0.$

✤ K is a closed set

## Semidefinite Cone

Closed Convex Cone:

#### *K* is a *closed convex cone* if:

- $x, w \in K \Longrightarrow \alpha x + \beta w \in K, \quad \forall \ \alpha, \beta \ge 0.$
- K is a closed set

#### Remark 1 :

 $S^{n}_{+} = \{X \in S^{n} | X \ge 0\}$  is a closed convex cone in  $\Re^{n^{2}}$  of dimension  $n \times (n + 1)/2$ .

*Proof.* Suppose that  $X, W \in S^{n}_{+}$ .  $\forall \alpha, \beta \geq 0, \forall \nu \in \Re^{n}$ :

$$v^T(\alpha \cdot X + \beta \cdot W)v = \alpha \cdot v^T Xv + \beta \cdot v^T Wv \ge 0,$$

Whereby  $\alpha \cdot X + \beta \cdot W \in S^{n}_{+}$ .

- $\bigstar \mathbf{X} \in S^n \Longrightarrow X = QDQ^T$ 
  - (Q is orthonormal  $[Q^T = Q^{-1}]$ , D is diagonal)
- The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal entries of D.

 $\bigstar \mathbf{X} \in S^n \Longrightarrow X = QDQ^T$ 

(Q is orthonormal  $[Q^T = Q^{-1}]$ , D is diagonal)

- The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal entries of D.
- ★  $X \ge 0 \iff X = QDQ^T$ , where the eigenvalues are all nonnegative.

 $X > 0 \iff X = QDQ^T$ , where the eigenvalues are all positive.

 $\bigstar \mathbf{X} \in S^n \Longrightarrow X = QDQ^T$ 

(Q is orthonormal  $[Q^T = Q^{-1}]$ , D is diagonal)

- The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal entries of D.
- ★  $X \ge 0 \iff X = QDQ^T$ , where the eigenvalues are all nonnegative.

 $X > 0 \iff X = QDQ^T$ , where the eigenvalues are all positive.

 $\bigstar [(X \ge 0) \land (X_{ii} = 0)] \Longrightarrow X_{ij} = X_{ji} = 0, \quad \forall j = 1, \dots, n.$ 

- $\bigstar \mathbf{X} \in S^n \Longrightarrow X = QDQ^T$ 
  - (Q is orthonormal  $[Q^T = Q^{-1}]$ , D is diagonal)
- The columns of Q form a set of n orthogonal eigenvectors of X, whose eigenvalues are the corresponding diagonal entries of D.
- ★  $X \ge 0 \iff X = QDQ^T$ , where the eigenvalues are all nonnegative.
- ★  $X > 0 \iff X = QDQ^T$ , where the eigenvalues are all positive.

 $M = \begin{pmatrix} P & v \\ v^T & d \end{pmatrix}$ 

- $\bigstar [(X \ge 0) \land (X_{ii} = 0)] \Longrightarrow X_{ij} = X_{ji} = 0, \quad \forall j = 1, \dots, n.$
- Matrix M defined as follows:
   Where P > 0, v is a vector and d is a scalar.
   Then M > 0 ⇔ d v<sup>T</sup>P<sup>-1</sup>v > 0.

#### We can think of *X* as....

✤ A matrix ,

An array of  $n^2$  components of the form  $(x_{11}, ..., x_{nn})$ ,

\* An object (a vector) in the space  $S^n$ 

#### We can think of *X* as....

✤ A matrix ,

An array of  $n^2$  components of the form  $(x_{11}, ..., x_{nn})$ ,

\* An object (a vector) in the space  $S^n$ 

All three equivalent ways of looking at X will be

## Linear Function of *X*

If C(X) is a linear function of X, then C(X) can be written as C \* X, where

$$C * X \coloneqq \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

#### Linear Function of *X*

If C(X) is a linear function of X, then C(X) can be written as C \* X, where

$$C * X \coloneqq \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

If X is a symmetric matrix, w.l.o.g. matrix C is also symmetric.

#### Linear Function of *X*

If C(X) is a linear function of X, then C(X) can be written as C \* X, where

$$C * X \coloneqq \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

If X is a symmetric matrix, w.l.o.g. matrix C is also symmetric.



## Semidefinite program (SDP)

minimize s.t.

SDP:

C \* X  $A_i * X = b_i, \quad i = 1, ..., m$  $X \ge 0$ 

## An example [n = 3, m = 2](1)

 $A_{1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix},$ 

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}, b_1 = 11 \text{ and } b_2 = 19.$$

|     | $(x_{11})$               | $x_{12}$               | $x_{13}$               |
|-----|--------------------------|------------------------|------------------------|
| X = | <i>x</i> <sub>21</sub>   | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> |
|     | $\langle x_{31} \rangle$ | <i>x</i> <sub>32</sub> | $x_{33}$ /             |

 $C * X = x_{11} + 4x_{12} + 6x_{13} + 9x_{22} + 0x_{23} + 7x_{33}.$ 

## An example [n = 3, m = 2] (2)

minimize  $x_{11} + 4x_{12} + 6x_{13} + 9x_{22} + 0x_{23} + 7x_{33}$ 

 $A_i * X = b_i, \quad i = 1, ..., m$ 

s.t.

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \ge 0$$

# An example [n = 3, m = 2] (2)

minimize  $x_{11} + 4x_{12} + 6x_{13} + 9x_{22} + 0x_{23} + 7x_{33}$ s.t.  $A_i * X = b_i, \quad i = 1, ..., m$  $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \ge 0$ 

Notice that SDP looks remarkably similar to a linear program.

#### LP: Special case of SDP

htuitively,

# $[(x \ge 0) \Leftrightarrow (x_i \ge 0)]$ $(X \ge 0) \Leftrightarrow (\text{each of the } n \text{ eigenvalues} \ge 0)]$

## LP: Special case of SDP

htuitively,

 $[(x \ge 0) \Leftrightarrow (x_i \ge 0)]$   $(X \ge 0) \Leftrightarrow (\text{each of the } n \text{ eigenvalues} \ge 0)]$ 

If  $A_i = diag(\alpha_{i1}, \dots, \alpha_{in})$ ,  $i = 1, \dots, m$  and  $C = diag(c_1, \dots, c_n)$ :

| minimize | C * X             |            |                        |
|----------|-------------------|------------|------------------------|
| s.t.     | $A_i * X = b_i$ , | i = 1,, m  |                        |
|          | $X_{ij}=0,$       | i = 1,, n, | $j = i + 1, \dots, n.$ |
|          | $X \ge 0$         |            |                        |

#### LP: Special case of SDP



#### Semidefinite Programming Duality

SDD:

maximize s.t.

 $\sum_{i=1}^{m} y_i b_i$  $\sum_{i=1}^m y_i A_i + S = C,$  $S \ge 0$ 

#### Semidefinite Programming Duality

SDD:

 $\begin{array}{ll} \mbox{maximize} & \sum_{i=1}^m y_i b_i \\ \mbox{s.t.} & \sum_{i=1}^m y_i A_i + S = C, \\ & S \geqslant 0 \end{array}$ 

The constraints of SDD state that:

$$S = C - \sum_{i=1}^{m} y_i A_i$$

must be positive semidefinite. That is,

$$S \ge 0 \Longrightarrow C - \sum_{i=1}^{m} y_i A_i \ge 0$$

#### The Dual of the example



## The Dual of the example

maximize 
$$11y_1 + 19y_2$$
  
s.t.  $y_1 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 3 & 7 \\ 1 & 7 & 5 \end{pmatrix} + y_2 \begin{pmatrix} 0 & 2 & 8 \\ 2 & 6 & 0 \\ 8 & 0 & 4 \end{pmatrix} + S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 9 & 0 \\ 3 & 0 & 7 \end{pmatrix}$   
 $S \ge 0$   
maximize  $11y_1 + 19y_2$   
s.t.  $\begin{pmatrix} 1 - 1y_1 - 0y_2 & 2 - 0y_1 - 2y_2 & 3 - 1y_1 - 8y_2 \\ 2 - 0y_1 - 2y_2 & 9 - 3y_1 - 6y_2 & 0 - 7y_1 - 0y_2 \\ 3 - 1y_1 - 8y_2 & 0 - 7y_1 - 0y_2 & 7 - 5y_1 - 4y_2 \end{pmatrix} \ge 0.$ 

## Weak Duality

#### Proposition.

Given a feasible solution X of SDP and a feasible solution (y, S) of SDD, the duality gap is

$$C * X - \sum_{i=1}^{m} y_i b_i = S * X \ge 0.$$

If  $C * X - \sum_{i=1}^{m} y_i b_i = 0$ , then X and (y, S) are each optimal solutions to SDP and SDD, respectively, and furthermore,

$$S * X = 0.$$

## **Strong Duality**

Theorem.

Let **z<sub>p</sub>\*** and **z<sub>D</sub>\*** denote the optimal objective function values of SDP and SDD, respectively.

Suppose that there exists a feasible solution  $\hat{X}$  of SDP such that  $\hat{X} > 0$ , and there exists a feasible solution  $(\hat{Y}, \hat{S})$  of SDD such that  $\hat{S} > 0$ .

Then both SDP and SDD attain their optimal values, and

 $z_P^* = z_D^*.$ 

There may be a finite or infinite duality gap. The primal or dual may or may not attain their optima.

- There may be a finite or infinite duality gap. The primal or dual may or may not attain their optima.
- There is no finite algorithm for solving SDP. There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for SDP.

- There may be a finite or infinite duality gap. The primal or dual may or may not attain their optima.
- There is no finite algorithm for solving SDP. There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for SDP.
- Given rational data, the feasible region may have no rational solutions. The optimal solution may not have rational components or rational eigenvalues.

- There may be a finite or infinite duality gap. The primal or dual may or may not attain their optima.
- There is no finite algorithm for solving SDP. There is a simplex algorithm, but it is not a finite algorithm. There is no direct analog of a "basic feasible solution" for SDP.
- Given rational data, the feasible region may have no rational solutions. The optimal solution may not have rational components or rational eigenvalues.
- Given rational data whose binary encoding is size L, the norms of any feasible and/or optimal solutions may exceed 2<sup>2<sup>L</sup></sup> (or worse).
- Given rational data whose binary encoding is size L, the norms of any feasible and/or optimal solutions may be less than 2<sup>-2<sup>L</sup></sup> (or worse).

## MAX CUT as Integer Program

Let G be an undirected graph with nodes  $N = \{1, ..., n\}$ , and edge set E. Let  $w_{ij} = w_{ji}$  be the weight on edge  $(i, j) \in E$ . We assume that  $w_{ij} \ge 0$  for all  $(i, j) \in E$ .

The *MAX CUT* problem is to determine a subset *S* of the nodes *N* for which the sum of the weights of the edges that cross from *S* to its complement  $\overline{S}$  is maximized (where  $(\overline{S} \coloneqq N \setminus S))$ ).

## MAX CUT as Integer Program

Let G be an undirected graph with nodes  $N = \{1, ..., n\}$ , and edge set E. Let  $w_{ij} = w_{ji}$  be the weight on edge  $(i, j) \in E$ . We assume that  $w_{ij} \ge 0$  for all  $(i, j) \in E$ .

The *MAX CUT* problem is to determine a subset *S* of the nodes *N* for which the sum of the weights of the edges that cross from *S* to its complement  $\overline{S}$  is maximized (where  $(\overline{S} \coloneqq N \setminus S))$ ).

Let 
$$x_j = 1$$
 for  $j \in S$  and  $x_j = -1$  for  $j \in \overline{S}$ .

MAX CUT:

$$\begin{array}{ll} \text{maximize }_{x} & \frac{1}{4} \sum_{i=1}^{n} \sum_{i=1}^{n} w_{ij} (1 - x_{i} x_{j}) \\ \text{s.t.} & x_{j} \in \{-1, 1\}, \quad j = 1, \dots, n \end{array}$$

#### **Proper Transformation**

Let  $Y = xx^T$ , whereby

$$Y_{ij} = x_i x_j, \qquad i = 1, ..., n, \qquad j = 1, ..., n$$

#### **Proper Transformation**

Let  $Y = xx^T$ , whereby

 $Y_{ij} = x_i x_j, \quad i = 1, ..., n, \quad j = 1, ..., n$ 

Then MAX CUT can be equivalently formulated as:

$$\begin{array}{ll} \text{maximize }_{Y,x} & \frac{1}{4}\sum_{i=1}^{n}\sum_{i=1}^{n}w_{ij}-W*Y\\ \text{s.t.} & x_{j}\in\{-1,1\}, \quad j=1,\ldots,n\\ & Y=xx^{T}. \end{array}$$

#### **Proper Transformation**

Let  $Y = xx^T$ , whereby

 $Y_{ij} = x_i x_j, \quad i = 1, ..., n, \quad j = 1, ..., n$ 

Then MAX CUT can be equivalently formulated as:



## Relaxation

The matrix *Y* is a symmetric rank-1 positive semidefinite matrix. If we relax this condition by removing the rank-1 restriction, we obtain the following relaxation of *MAX CUT*:

 $\begin{array}{ll} \underset{i=1}{\text{maximize } Y}{\text{maximize } Y} & \frac{1}{4}\sum_{i=1}^{n}\sum_{i=1}^{n}w_{ij} - W * Y\\ \text{s.t.} & Y_{jj} = 1, \qquad j = 1, \dots, n\\ & Y \geqslant 0. \end{array}$ 

**RELAX:** 

## Relaxation

**RELAX:** 

The matrix *Y* is a symmetric rank-1 positive semidefinite matrix. If we relax this condition by removing the rank-1 restriction, we obtain the following relaxation of *MAX CUT*:

 $\begin{array}{ll} \underset{i=1}{\text{maximize } Y}{\text{maximize } Y} & \frac{1}{4}\sum_{i=1}^{n}\sum_{i=1}^{n}w_{ij} - W * Y\\ \text{s.t.} & Y_{jj} = 1, \qquad j = 1, \dots, n\\ & Y \geqslant 0. \end{array}$ 

which is a semidefinite program.

## Upper bound

It is easy to see that *RELAX* provides an upper bound on *MAX CUT*, i.e.

 $MAX \ CUT \leq RELAX.$ 

## Upper bound

It is easy to see that *RELAX* provides an upper bound on *MAX CUT*, i.e.

 $MAX \ CUT \leq RELAX.$ 

As it turns out, one can also prove:

 $0.87856 RELAX \leq MAX CUT \leq RELAX.$ 

This is an impressive result, in that it states that the value of the semidefinite relaxation is guaranteed to be no more than 12% higher than the value of *NP*-hard problem *MAX CUT*.

## Applications

#### **Combinatorial Optimization**

## Applications

#### Combinatorial Optimization

**Convex Optimization** 

## Applications

#### Combinatorial Optimization

Convex Optimization

Control Theory
Interior point methods

